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Abstract 
 

A solar active region (AR) is the region where various kinds of active phenomena tend to 

occur, such as solar flares and coronal mass ejections (CMEs). It has been known that an AR is 

formed via flux emergence from the convection zone. Although it has been observationally shown 

that an AR slowly evolve for weeks or even months before flares and CMEs suddenly occur, the 

triggering mechanism of such eruptive events is still not clear. A CME entered the interplanetary 

space, called interplanetary CME (ICME), sometimes travels toward the Earth, causing space 

weather disturbances as it interacts with the Earth’s magnetosphere. These disturbances 

potentially damage spaceborne and ground-based systems and services. Regarding these topics, 

we focus on two questions: 1) how does the solar flux rope that eventually develops to an ICME 

evolve from the quasi-static state to the dynamic state (dynamic state transition); 2) how do ICME 

properties in the interplanetary space affect the space weather disturbances in the vicinity of the 

Earth. 

 

Firstly, we performed a three-dimensional magnetohydrodynamic (MHD) simulation to 

investigate the dynamic state transition of a solar flux rope. In this simulation, we obtained a flux 

rope by reproducing flux emergence from the solar convection zone into the solar corona. In order 

to investigate the dynamic evolution of emerging magnetic field in the corona, we used two key 

parameters κ and H, the former of which represents the curvature of an emerging magnetic field 

line and while the latter the scale height of emerging magnetic field strength along the symmetry 

axis of an emerged magnetic loop. Here κ is related to downward magnetic tension force, while 1/H is related to upward magnetic pressure force. The plot of κ and H along the symmetry axis 

shows that they tend to increase with height until they reach their common peak. Below the 

location of the common peak, 1/H tend to be almost balanced by κ, whereas above that location, 1/H tends to exceeds κ, suggesting that upward magnetic pressure force is dominant over the 

downward magnetic tension force. When the flux rope axis exceeds the peak, it experiences the 

dynamic transition from a quasi-static state in which the upward and downward forces are 

balanced to an eruptive state. We also investigated the torus instability and compared to the 



II 

 

dynamic state transition that we proposed. 

Secondly, we performed an MHD simulation to investigate the relation between ICME 

properties and space weather disturbances in the vicinity of the Earth. Toward this end, we used 

a spheromak-shaped ICME model parametrized by the injection speed, mass, location, magnetic 

field strength, and magnetic field orientation. The parameter values were determined based on a 

halo CME event observed on 10 September 2014 by Large Angle and Spectrometric Coronagraph 

(LASCO) on board the Solar and Heliospheric Observatory (SOHO). We simulated the ICME 

travelling through a background solar wind reconstructed via an MHD-interplanetary scintillation 

(MHD-IPS) tomography method with the photospheric magnetogram data and IPS data. We 

compared simulation results to in situ observations in the vicinity of the Earth and discussed how 

the arrival time and solar wind profiles associated with the ICME vary with the properties of the 

ICME. 
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Chapter 1 Introduction 
 

 

1.1 Emergence of Solar Magnetic Fields 
 

Solar magnetic fields are a key ingredient of various kinds of active phenomena on the Sun, 

such as solar flares, jets, and coronal mass ejections (CMEs). It is therefore important to 

understand how these magnetic fields are formed in the solar interior (Figure 1.1), emerge to the 

solar surface and produce solar active regions (ARs). Results from the helioseismology show that 

the magnetic fields are probably amplified at the base of the convection zone, called tachocline 

(Spiegel and Zahn, 1992), due to strong shear flows there. The magnetic fields in the convection 

zone then emerge to the solar surface by the magnetic buoyancy (Parker, 1955) and produce ARs. 

The buoyancy of the magnetic fields could be understood as follows. Suppose that a 

magnetic flux tube has formed in the convection zone with gas pressure 𝑝௜ and magnetic field 

strength 𝐵௜ (Figure 1.2). The total pressure (gas pressure + magnetic pressure) balance in the 

lateral direction of the tube requires  

 

where, 𝑝௘ is the external gas pressure outside the tube. If the temperature of the structures are 

uniform (𝑇௜ = 𝑇௘ = 𝑇), and using the perfect gas law, the internal density 𝜌௜ should be smaller 

than the external density 𝜌௘. This produces a buoyancy force of (𝜌௘ − 𝜌௜)𝑔 and make the tube 

rises, where 𝑔 is the solar gravity. Once the tube starts to rise and its shape is curved, the tube 

also feels downward magnetic tension force (𝐵௜ଶ/4𝜋𝐿, where L is the length of the tube), making 

short flux tubes difficult to rise. 

  

 𝑝௜ + ஻೔మ଼గ = 𝑝௘, (1.1) 
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Figure 1.2 An illustration of the emergence of a flux rope from the solar

convection zone. 

Figure 1.1 Structure of the Sun (adapted from https://en.wikipedia.org/wiki/Sun). 




