Spiral angle of IMF near an Earth orbit

Near an Earth orbit, the spiral angle is

$$\tan \theta = \frac{-v_{\phi}}{v_{r}} \approx \frac{(1 \text{ AU}) \Omega_{o}}{v_{r}} \sim \frac{1.5 \times 10^{8} \text{ km} \times (2.87 \times 10^{-6} \text{ rad s}^{-1})}{400 \text{ km s}^{-1}} = 1.07$$

$$\Rightarrow \theta \sim 47^{\circ} \left(\phi^{\text{GSM}} \sim 133^{\circ}\right)$$

Steady solar wind observed near an Earth orbit

Sector structure of IMF

Origin of sector structure...

Polarity inversion plane is not coincident with ecliptic plane.

Time variation of the sector structure...

Multi-sector structure

From T. Tanaka

... solar maximum

Polarity inversion plane is **strongly rippled** because a number of solar active regions exist.

Parker's 1-dimensional model

(depends on r, r-component of a vector is considered) (spherically symmetric, isothermal, steady, no rotation)

spherically symmetric (isotropic) outflow

 \Rightarrow flow velocity has only a radial component (v_r)

$$\mathbf{v}\left(r,\theta,\phi\right) = v_r\left(r,\theta,\phi\right)\hat{\mathbf{r}} + v_\theta\left(r,\theta,\phi\right)\hat{\theta} + v_\phi\left(r,\theta,\phi\right)\hat{\phi}$$

$$\longrightarrow v_r\left(r\right)\hat{\mathbf{r}}$$

isothermal

$$\Rightarrow$$
 $T = const.$

thermal conduction efficiently works to make temperature uniform