Post-flare phase

transport of released energy and atmospheric response

Energy transport and atmospheric response

(impulsive flare vs. LDE flare; impulsive phase vs. gradual phase of an LDE flare)

electron's process (conduction)... relatively fast => represented by its thermal or non-thermal speed wihch

Shibata & Magara (2011)

Future researches on solar flare

3D modeling

&

Prediction

3D modeling

Previous studies...

focused on 2D features to derive basic physical processes involved in a flare

In reality, flares occur in 3D space.

Investigate the basic processes in 3D space...

Construct a 3D model that reproduces the evolution of an emerging flux tube (energy buildup, preflare, main phases) to investigate how the basic physical processes derived from 2D models work in 3D space.

Dynamic formation of a 3D current sheet (preflare phase)

Magara (2017)

3D reconnection (main phase)

Fig. 3. Left: snapshot of the region of magnetic reconnection in the same domain as figure 2. Time is t=61.6. Magnetic field lines are represented by arrowed cyan lines, while distribution of vertical magnetic flux is illustrated by the horizontal gray-scale map placed at z=2, ranging from -0.3 (black) to 0.3 (white). Distribution of temperature is illustrated by the vertical map placed at y=0, where colors represent $1 \le T < 20$ (dark gray), $20 \le T < 70$ (yellow), $70 \le T < 150$ (orange), and $150 \le T$ (red). Pink arrows indicate flow velocity field at y=0, and a unit vector scaled to $10 c_{\rm ph}$ is displayed as the pink horizontal arrow placed near the base. Right: schematic illustration of current sheet formation caused by flux rope eruption. Adapted from Magare et al. (2011), (Color online)

Magara (2015)

Previous studies...

Magnetic reconnection is a key mechanism for producing a flare.

The next step...

To find out when & where this mechanism operates to produce a flare

- Perform observation data-based simulation of a flare
- Derive a key quantity(es) indicating the occurrence of a flare

Observation data-based simulation...

Figure 5. Three-dimensional dynamics of the magnetic field lines. Orange lines represent the twisted field lines with more than a half-turn twist at t=0 in Run D, i.e., t=1 in Run C, while blue lines represent overlying field lines surrounding the twisted lines in orange. The B_z distribution is drawn in gray, and the vertical velocity distribution is mapped in color.

Key quantities indicating the occurrence of a flare...

