Energy release phase

main phase of a flare



A time scale problem...

Time scale of energy release via diffusion (no flow)
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To explain the main phase of a flare, we need a mechanism for releasing free magnetic
energy (i.e. dissipating cross-field electric current i) much faster than diffusion.

Magnetic reconnection could be a mechanism that enables such fast energy
release.



What is magnetic reconnection?

black arrows... magnetic field
red arrows ... flow

= |
SRAY
5 flow-coupled diffusion eq. 5 diffusion eq.
B _ B _ 2
E—V X (v X B)—V X (ndﬂv X B) vzo’nw:umf;n ot =Nay V B

It is flow-coupled diffusion by which j,-based free magnetic energy is
efficiently converted into thermal and kinetic energy.



Difference between diffusion and reconnection...

« Diffusion

No flow (not dynamic process)
Magnetic field diffuses through a static plasma.
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- Reconnection
Flow exists (dynamic process).
Magnetic field and flow interact with each other.
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Speed of magnetic reconnection... characterized by inflow speed
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Figure 26: Magnetic reconnection in a current sheet.

Shibata & Magara (2011)
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Key parameter: M , =

v,: Alfvén speed in inflow region



Models of magnetic reconnection

The following two models assume different magnetic field configurations and flow patterns. Dependence of reconnection
v, L
speed on magnetic Reynolds number R, =

diff

is significantly different between them.
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Sweet-Parker model

* long diffusion region

Petschek model

* short diffusion region + slow MHD shocks
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When R, is large, Petschek model is more suitable for a fast energy release than

Sweet-Parker model.

Simple diffusion
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In the solar corona, Rm ~ 10713

This can explain the time scale of a flare (¢
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From steady reconnection to non-steady reconnecton



Time profiles of radiative emissions during the main phase
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sigmoid appears

emission from a thermal plasma
(long duration, gradual profile)

emission from a nonthermal plasma
(short duration, impulsive profile)

These time profiles suggest that non-steady
reconnection proceeds during a flare.

Figure 41: Typical time variation of emissions observed in various wavelengths during a flare (from Kane,

1974).



Plasmoid ejection may play a key role in non-steady reconnection...

current sheet

plasmoid
larger plasmoid V;

larger energy release /\ Shibata (1999)

Wp : plasmoid width
L, : plasmoid length

FECONNECHION  meep- plasmoid ejection

\ Q / positive

strong inflow feedback




Multiple ejection of plasmoids

multiple plasmoid ejection => a series of non-steady energy releases => intermittent emissions
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An X-class flare accompanying a CME (29 March, 2014)

A sigmoid appeared during the preflare phase.



