Accompanying phenomena of CMEs

Sigmoid, Dimming

Sterling & Hudson (1997)

Canfield et al. (1999)

Yohkoh

An X-class flare accompanying a CME (29 March, 2014)

Sigmoid appeared just before the onset of the flare.

SOHO, SDO

ICME (Interplanetary CME)

CME traveling through the interplanetary space

Solar wind...

it is an outflow driven in the solar atmosphere, where gas pressure and magnetic field may play important roles.

Brief history:

- 1859... R. Carrington found a flare on the Sun (he supposed an energy flow from the Sun).
- 1913... K. Birkeland predicted flows of electrons and positive ions from the Sun.
- 1919... F. Lindemann suggested that both electrons and protons come from the Sun.
- 1950s... S. Chapman suggested that a coronal plasma should extend over the orbit of the Earth.
- 1951... L. Biermann investigated tails of comets and postulated that the Sun emits a steady stream of particles pushing the tails away from the Sun.
- 1958... E. Parker developed a hydrodynamic model of solar wind.

Properties of solar winds

Components: electrons, protons

Energy: 10 ~ 100 ev (1 ev ~ 10^4 K for thermal plasma)

Speed (near the Earth): 400 km/s (slow wind $1.5 \times 10^6 K$, coronal composition)

750 km/s (fast wind $8 \times 10^5 K$, photospheric composition)

(c.f. escape velocity: 618 km/s, coronal thermal velocity: 150 km/s)

Source region: low latitude, from closed-field region (slow wind)

high latitude, from open-field region (fast wind)

Mass flux (loss rate of mass): $\dot{M} \sim 10^{12}$ g/s ($\sim 10^{-14}$ M_o / yr) $\longrightarrow M_o \sim 2 \times 10^{33}$ g

Angular momentum flux (loss rate of angular momentum):

$$\dot{J} \sim 7 \times 10^{29} \text{ g cm}^2/\text{s}^2$$
 ($\sim 10^{-11} \text{ J}_{\odot} / \text{ yr}$) $\longrightarrow J_{\odot} \sim 2 \times 10^{48} \text{ g cm}^2/\text{s}$