Cyclic amplification of magnetic fields in the solar interior

Solar magnetic fields (SMFs) are maintained via cyclic amplification...

Theoretical models of periodically varying SMFs

· Poloidal component (B_p) => Toroidal component (B_p)

· Toroidal component (B_t) => Poloidal component (B_p)

Parker's cyclone model (α - effect)

- Rising & expanding motion (v_r, v_ϕ)
- Coriolis force $(2\rho v \times \Omega)$

Helioseismology provides observational information on the solar interior...

(see http://163.180.179.74/~magara/page31/Topics/Seismology/seis2.html)

Distribution of sound speed (=> temperature) in the solar interior

Fig. 5.17. Square of the sound speed in the Sun. Continuous line: inversion of the data in Fig. 5.16; dashed: theoretical solar model. From Christensen-Dalsgaard et al. (1985)

Transport of magnetic fields through the convection zone

Convective motions...

Vertical slice of a 3D simulation

SMFs rise via magnetic buoyancy...

Distribution of angular velocity in the solar interior

Tachocline (bottom of the convection zone)
... sharp change of angular velocity => shear flow
magnetic fields are deformed by the shear flow, which may produce flux tubes of intense magnetic flux.

Emergence of magnetic fields into the solar atmosphere

Flux emergence...

A magnetic flux tube emerges to the solar atmosphere and then expands rapidly due to the sharp decrease of gas pressure of a surrounding plasma across the solar surface.

