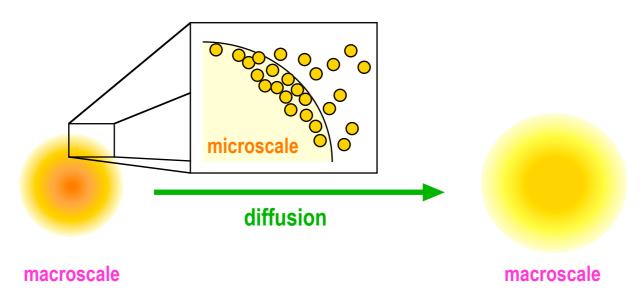
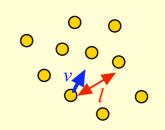
What is diffusion?

A microscale process (<= kinetic approach) caused by collision of particles, which makes a macroscale distribution (<= fluid approach) smooth.



Diffusion is characterized by **particle's motion**: mean free path l & velocity v

dimension of diffusivity: m²/s... velocity (m/s) x length (m)



Electrical conductivity & magnetic diffusivity

Electrical conductivity

$$\sigma = 1.53 \times 10^{-2} \frac{T^{3/2}}{\ln N_D} \text{ (mho/m)} \propto T^{3/2}$$

conductivity is high in hot plasmas

 $\ln N_D$ (Coulomb logarithm) ~ 10

Magnetic diffusivity

$$\eta_{diff} \equiv \frac{1}{\mu_0 \sigma} = 5.2 \times 10^7 \frac{\ln N_D}{T^{3/2}} \frac{(\text{m}^2/\text{s})}{\text{m}^{2/2}} \propto T^{-3/2}$$

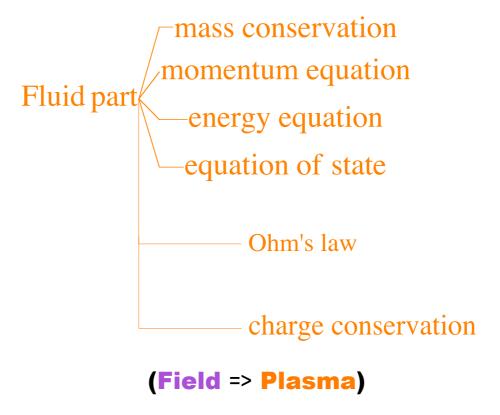
dimension: velocity (m/s) x length (m)

diffusivity is low in hot plasmas

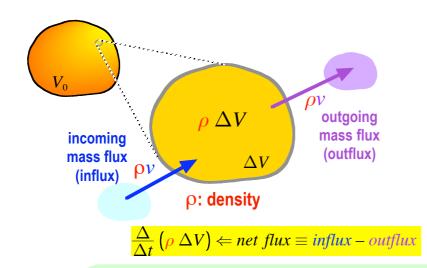
* What is diffused is magnetic field (or non-gyrating proton).

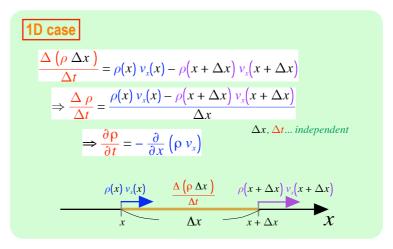
Electric energy density vs. Magnetic energy density

Electric energy density... $\mathcal{E}_E = \frac{\varepsilon_0}{2} E^2$ Magnetic energy density... $\mathcal{E}_M = \frac{B^2}{2 \mu_0}$



Equation I... mass conservation





$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \, v) \Rightarrow \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, v) = 0$$

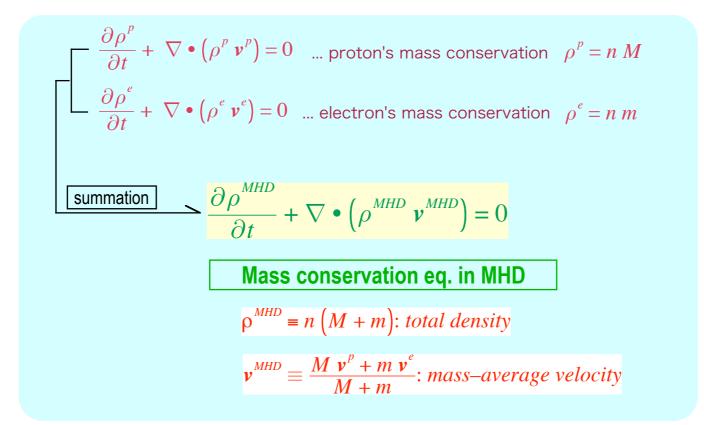
 $\nabla \cdot (\rho v)$... - net flux; when this is positive, gas density decreases with time.

$$\nabla \cdot (\rho \, \mathbf{v}) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot (\rho \, v_x, \rho \, v_y, \rho \, v_z) \qquad \nabla \cdot (\rho \, \mathbf{v}) >$$

$$= \frac{\partial (\rho \, v_x)}{\partial x} + \frac{\partial (\rho \, v_y)}{\partial y} + \frac{\partial (\rho \, v_z)}{\partial z} \qquad \text{divergence}$$

$$\nabla \cdot (\rho \, \mathbf{v}) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot (\rho \, v_x, \rho \, v_y, \rho \, v_z) \qquad \nabla \cdot (\rho \, \mathbf{v}) > 0 \implies \frac{\partial \rho}{\partial t} < 0$$

Mass conservation equation in MHD



two-species fluid elements (proton + electron)

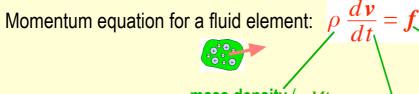
single-species fluid elements (MHD)

Equation II... momentum equation

Equation of motion for a particle: $M \frac{dv}{dt} = F$ (mass x acceleration = force) $F_{em} = q (E + v \times B)$

$$\mathbf{F}_{em} = q \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right)$$

$$\mathbf{F}_{g} = M \mathbf{g}$$



mass density (n M: mass per unit volume) volume force (force per unit volume)

- acceleration: $\frac{d\mathbf{v}}{dt}$... Lagrangian derivative $\Rightarrow \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \bullet \nabla \mathbf{v}$... Eulerian derivative
- volume force

gas pressure gradient force (collision-related): $f_p = -\nabla p$

Coulomb force + Lorentz force (collision-unrelated; interaction with field): $f_{em} = n \ q \ (E + v \times B)$

gravitational force (collision-unrelated; interaction with field): $f_g = n M g$

viscous force (collision-related): $f_{v} = \rho \ \nu \left[\nabla^{2} \ v + \frac{1}{3} \ \nabla \left(\nabla \bullet v \right) \right], \ \nu$: viscosity