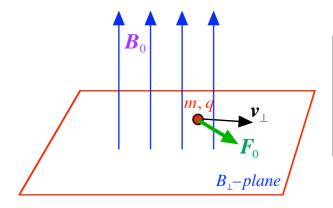

Validity of fluid approach

Validity of fluid approach

=> mean free path and gyration radius are key quantities

$l_{\it mfp}$ « $L_{\it sys}$... Fluid approach is appropriate.

It makes good physical sense to introduce a fluid element whose size L_{FE} is smaller than L_{SYS} but larger than l_{mfp} . Particles inside the fluid element make a random walk with the velocity v_T . They basically stay inside the element; only part of them move in or out near the boundary of the element, which is treated by diffusion approximation.


$l_{\it mfp} \gg L_{\it sys}...$ Fluid approach is generally inappropriate.

However, even if collision is less frequent (collisionless plasma), fluid approach may be valid in B_{\perp} —plane if $r_G \ll L_{sys}$ (in B_{\parallel} -direction, we may have to take a different approach).

Motion of a charged particle in B_{\perp} -plane

(Gyration & Drift)

Gyration with external force

B₀: magnetic field (uniform & constant, straight shape)

 ν : particle's velocity m, q: particle's mass & charge

 F_0 : external force (uniform & constant, in B_{\perp} -plane)

Equation of motion in
$$B_{\perp}$$
-plane: $m \frac{d \mathbf{v}_{\perp}}{dt} = \mathbf{q} \mathbf{v}_{\perp} \times \mathbf{B}_{0} + \mathbf{F}_{0}$

$$\frac{d^{2}v_{G}(t) + v_{F}}{dt^{2}} = -\frac{q^{2}B_{0}^{2}}{m^{2}}v_{G}(t)$$

$$\frac{d^{2}v_{G}(t) + v_{F}}{dt^{2}} = -\frac{q^{2}B_{0}^{2}}{m^{2}}v_{G}(t)$$

$$v_{F} = \frac{F_{0} \times B_{0}}{qB_{0}^{2}}$$

$$v_{G}(t) \times B_{0} \Rightarrow \text{gyration: } v_{G}(t)$$

$$\text{gyration angular frequency: } \omega_{B} \equiv \frac{qB_{0}}{m}$$

$$\text{gyration radius: } r_{G} = \frac{m v_{\perp}}{qB_{0}}$$

$$F_{0} \Rightarrow \text{drift: } v_{F}$$

$$F_{0} = qE_{0} \Rightarrow \text{ExB drift } (v_{ExB} = \frac{E_{0} \times B_{0}}{B_{0}^{2}})$$

$$q \ v_G(t) \times B_0 \Rightarrow$$
 gyration: $v_G(t)$
gyration angular frequency: $\omega_B \equiv \frac{q \ B_0}{m}$
gyration radius: $r_G = \frac{m \ v_\perp}{q \ B_0}$

$$F_0$$
 => drift: v_F

$$F_0 = q E_0 \Rightarrow \text{ExB drift } (v_{E \times B} = \frac{E_0 \times B_0}{B_0^2})$$

$$v_{\perp} = v_G(t) \text{ (gyration)} + v_F \text{ (drift)}$$