e-i, i-i, i-e collisions

m: electron's mass, M: ion's mass $t_c^{e-e} \propto m_e^{1/2}$

1) e-i collision (electron's momentum is changed by ion)

Reduced mass (relative coordinates): $\mu = \frac{m M}{m + M} \sim m$

•: center of balance (fixed point)

electrons become thermalized (T_e is determined)

2) i-i collision (ion's momentum is changed by ion)

$$t_c^{i-i} \sim \frac{M^{1/2} \left(k_B T_i\right)^{3/2}}{n_i e^4} \sim \sqrt{\frac{M}{m}} t_c^{e-e} >> t_c^{e-e} \qquad \Longrightarrow \int_{m/2}^{\infty} \Leftrightarrow \int_{m/2}^{\infty} \int_{m/2}^{\infty} dt dt$$

ions become thermalized (T_i is determined)

3) i-e collision (ion's momentum is changed by electron => momentum exchange is considered)

Ion and electron exchange the same amount of momentum per unit time:

$$M \frac{\Delta v_{90}^{relative}}{t_c^{i-e}} \sim m \frac{\Delta v_{90}^{relative}}{t_c^{e-i}}$$

$$t_c^{i-e} \sim \frac{M}{m} t_c^{e-i} >> t_c^{i-i} >> t_c^{e-e}$$

ions and electrons become thermalized $(T_e \sim T_i \sim T$: same temperature)

on needs a longer time (t_c^{i-e}) than

i – e collision

 $\Delta v_{90}^{relative}$ fixed target $\Delta v_{90}^{relative}$ fixed target

e – i collision

Debye length

(shielding of electric field)

Debye length

Isotropic distribution model

 \dots only depends on the distance r from the central particle

(each particle continuously moves, while keeping the same isotropic distribution)

 Z_i ... ion's valency number

 $(Z_i = 1 \text{ for a proton})$