Additional comments on plasma state, kinetic & fluid approaches

Plasma state... 4th state of a system in which

it is composed of many charged particles

these particles **behave collectively** => *local charge neutrality*

Kinetic approach... *more fundamental approach* in the sense that

it is based on a real object (particle)

it can be used **even for a non-plasma state** (each particle behaves independently)

Fluid approach... less fundamental approach in the sense that

it is based on a virtual object (fluid element)

it can be used **only for a thermal state** (*velocity distribution of particles is given by Maxwellian distribution*)

Characteristic scales of plasmas

MKS	CGS
В	$\frac{B}{C}$
$\boldsymbol{\epsilon}_0^{-1}$	4π
μ_0	$\frac{4\pi}{c^2}$
e	$e \sqrt{4\pi\epsilon_0}$

Characteristic scales related to electric field

(collision, oscillation)

Mean free path

(collision between particles)

Mean free path of a neutral particle

... a distance over which a particle freely travels without colliding with another particle

Mean free path of a photon (collision between a photon and an electron)

Thomson formula

Cross section:
$$\sigma_T = \frac{8\pi}{3} \left(\frac{e^2}{m_e c^2} \right)^2 = \frac{8\pi}{3} r_e^2$$

 r_e ... classical radius of electron ~ 2.8×10^{-15} m

Photon's mean free path (Thomson scattering)... $l_T = \frac{1}{n \sigma_T}$