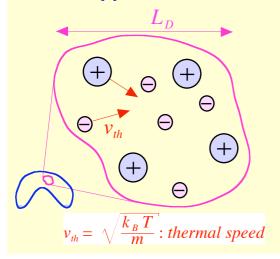
Typical scales in both approaches...

Kinetic approach... particle is a fundamental object (its internal structure is not considered)



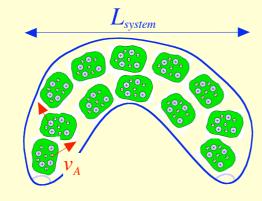
Typical scales:

Length...
$$L_D$$
 (Debye length)

e.g., 4 m for a solar coronal plasma

Time...
$$L_D/v_{th} \sim 1/v_p$$
 (plasma frequency)
e.g., 5×10^{-9} s for a solar coronal plasma

Fluid approach... fluid element is a fundamental object (its internal structure is not considered)



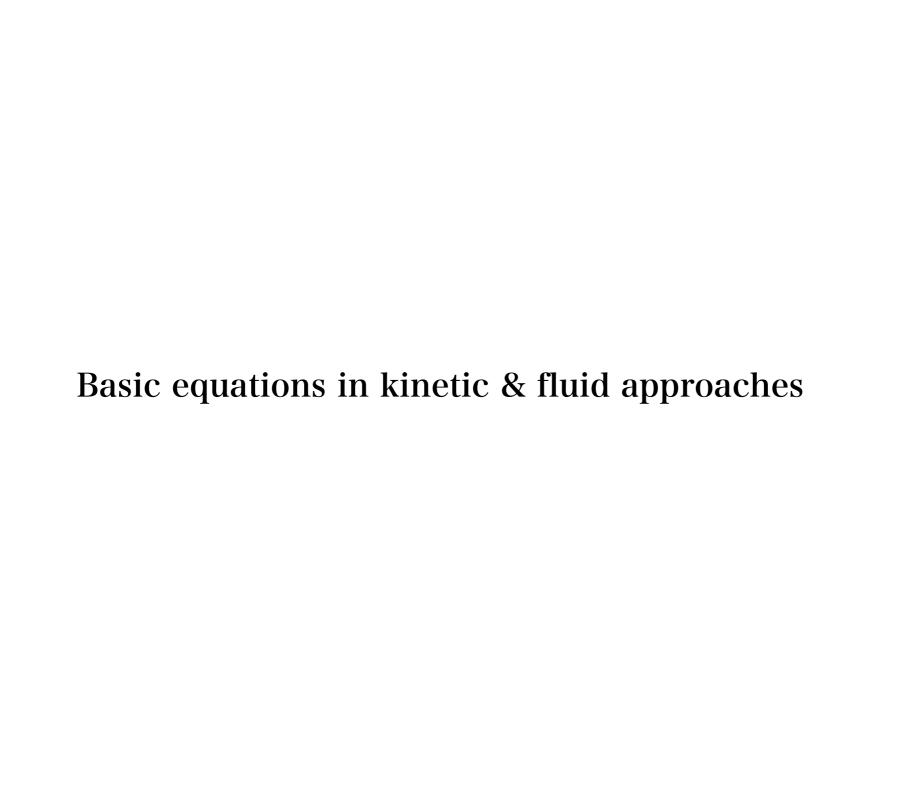
$$r_{particle} << L_D << l_{mfp} << L_{FE} << L_{system}$$
 $r_G << L_{FE}$

Typical scales:

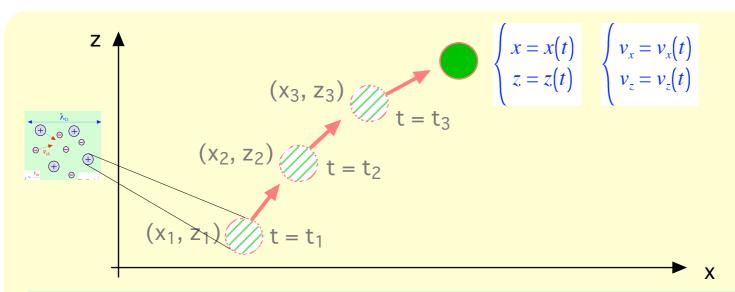
Length...
$$L_{system}$$
 (System size)
e.g., $100,000 \text{ km} \sim 10^8 \text{ m}$ for a coronal loop

Time...
$$L_{system} / v_A (v_A = \frac{B}{\sqrt{\mu_0 n m}}: Alfv\acute{e}n speed)$$

e.g., 100 s for a coronal loop ($v_A \sim 1000 \text{ km/s}$)



Kinetic approach... Focus on the position and velocity of a particle at every time => Mechanical equation



In the kinetic approach, we consider the **physical state** of a **particle** represented by its **position** and **velocity**.

The mechanical equation is a differential equation where time is the only independent variable (ordinary differential equation, ODE).

$$\begin{cases}
m \frac{dv_x}{dt} = F_x(x(t), z(t), v_x(t), v_z(t), t) \\
m \frac{dv_z}{dt} = F_z(x(t), z(t), v_x(t), v_z(t), t)
\end{cases}
\begin{cases}
\frac{dx}{dt} = v_x(t) \\
\frac{dz}{dt} = v_z(t)
\end{cases}$$