Introduction to
Physics of Fluids and Plasmas

Counsel: Tuesday & Thursday 11:30 - 13:00

Office: Room 532 in the Applied Science Bldg.

Homepage: //solardynamicslab.khu.ac.kr/~magara

Goals:

- Understand basic properties of plasmas
- Derive magnetohydrodynamics (MHD) equations of plasmas
- Understand fundamental properties of MHD
- Understand MHD waves

Lecture type:

Theory: 60%, Practical Training: 40%

Instruction method:

Discussion, Audi-visual Education, Presentation

Evaluation method:

Mid-term Exam... 30%, Final Exam... 30%, Homework/Report... 30%, Attendance... 10%

Textbooks:

- Solar Magnetohydrodynamics (E.R. Priest, D. Reidel Publishing Company, 1984, 9789027718334)
- Introduction to Plasma Physics and Controlled Fusion (Francis F. Chen, Springer, 1984, 9780306413322)
- Plasma Physics (Peter Andrew Sturrock, Cambridge University Press, 1994, 9780521448109)
- Gas dynamics (Frank H. Shu, Univ. Science Books, 1992, 9780935702651)

Assignments:

Each student should submit a report, in addition to taking mid-term and final exams.

What is plasma?

Plasma...

the 4th-state of matter, following solid, liquid, and gas

High temperature ($T \ge 10^4 \text{ K}$)

→ neutral particles are dissociated into positive ions and negative electrons (ionization)

plasma

Two types of plasma

Cold plasma (partially ionized plasma)...

low temperature, only part of particles are ionized

T ~ several thousands K

Hot plasma (fully ionized plasma)...

high temperature, all particles are ionized

 $T >> 10^4 K$

Examples of plasmas

Plasma in our daily life (cold plasma)

plasma television

fluorescent lamp

Plasma in the universe (hot plasma)

Solar atmosphere (chromosphere)

Since the temperature is very high (higher than 10,000 K), matter is in a plasma state.

Magnetosphere

Saturn

Active region on the Sun

Jet in an active galactic nucleus (AGN)

Laboratory plasma (hot plasma)

Plasma in a tokamak

Plasma... future energy resource (via nuclear fusion)

How can we confine a 100,000,000 K plasma?

Even for the matter that has the highest melting point, this is less than 4000 K ('*tungsten*' whose melting point is about 3695 K).

This means that even if *tungsten* is used to try to confine a plasma, it will be melted and vaporized immediately.

Therefore, we cannot use <u>a solid body</u> to confine a plasma. Instead, we use *magnetic field* to confine a plasma.

Magnetic field is used to confine a hot plasma...

Iron... melting point \sim 1808 K Tungsten... melting point \sim 3695 K

Plasma... T > 10000 K