
Thermal conduction... typical diffusion process

T x, y, z, t0

T x, y, z, t1

Temperature flux: FT =    T
... from a high temperature region to low temperature region

Temperature change rate: T
 t

= net influx (influx –  outflux):   • FT  
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z ... divergence of FT

t = t0

t = t1 > t0

: thermal diffusivity... dimension:  (velocity x mean free path)

Time-dependent part... 1st-order partial derivative
Space-dependent part... 2nd-order partial derivative
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Diffusion length: ldif ~  tdif
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Evolutionary profile of a diffusion process

Diffusion speed: vdif =
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t = 0
   

td

Profile changes with time.
Profile does not move with time.

Diffusion proceeds faster at an early 
phase than a late phase.
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Wave equation



Wave propagation 
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t = t0

t = t1 > t0

u x, t
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u: physical quantity
c: propagation speed

In a three-dimensional case, 
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Time-dependent part... 2nd-order partial derivative
Space-dependent part... 2nd-order partial derivative

Evolutionary profile of a propagating wave 

Profile does not change with time.
Profile moves with time.
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Linear PDE and Nonlinear PDE



semi-linear PDE...  coefficients of the highest-order partial derivative do not depend on solution function

A, B, C... depends on (x, y)

Linear PDE... linear for solution function and its partial derivatives

quasi-linear PDE... linear for the highest-order partial derivative of solution function

A, B, C, D, E, F, G... depends on (x, y, u
x , u

y , u) 

Nonlinear PDE... any PDE except for linear, quasi-linear, semi-linear PDEs

Example: 2nd-order linear PDE (solution function: u = u (x, y))

Example: 2nd-order nonlinear PDE (solution function: u = u (x, y))

A (x, y) ∂
2u
∂x2 + B (x, y) ∂

2 u
∂x ∂y + C (x, y) ∂

2u
∂y2 + D (x, y) ∂u

∂x + E (x, y) ∂u
∂y + F (x, y) u = G (x, y)

G (x, y) = 0 ⇒ homogeneous
G (x, y) ≠ 0 ⇒ inhomogeneous

principle of superposition
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= 1 eikonal equationu
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= u

This is the 1st-order PDE, so the highest-order is the 1st order.

This is the 1st-order PDE, so the highest-order is the 1st order.

This is the 2nd-order PDE, so the highest-order is the 2nd order.

e.g. u
 t + u u

x = 0

e.g. u
 t + u u

x – 


2u
x2 = 0 Burgers equation

e.g.,

: constant


