3. Numerical simulation is based on partial differential equations (PDEs) that describe temporal & spatial variations of physical quantities such as density, velocity, pressure, and magnetic field.

e.g.)

Magnetohydrodynamic equations... a set of PDEs

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \, v)$$

$$\frac{\partial v}{\partial t} = -(v \cdot \nabla) \, v + \frac{-\nabla p + j \times B}{\rho}$$

$$\frac{\partial p}{\partial t} = -(v \cdot \nabla) \, p - \gamma \, p \, \nabla \cdot v$$

$$\frac{\partial B}{\partial t} = \nabla \times (v \times B)$$
Time-dependent part Space-dependent part

This set of PDEs describe temporal & spatial variations of physical quantities ρ , ν , P, B, j, which are given by functions of space (x, y, z) and time (t).

Basic equations given by a set of PDEs are complex; they are coupled with each other.

Solving these equations analytically to obtain an exact solution is difficult.

$$\frac{\partial \mathbf{p}}{\partial t} = -\nabla \cdot (\mathbf{p} \, \mathbf{v})$$

$$\frac{\partial \mathbf{v}}{\partial t} = -(\mathbf{v} \cdot \nabla) \, \mathbf{v} + \frac{-\nabla p + \mathbf{j} \times \mathbf{B}}{\mathbf{p}}$$

$$\frac{\partial \mathbf{p}}{\partial t} = -(\mathbf{v} \cdot \nabla) \, \mathbf{p} - \gamma \, \mathbf{p} \, \nabla \cdot \mathbf{v}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$

Therefore, we perform numerical simulation to obtain an approximate solution, which helps to understand the physical mechanism of a phenomenon evolving in time and space.

Examples

numerical simulations performed for investigating solar & space phenomena

Solar flare

Explosive phenomenon in a solar corona

Observation of solar flares

Full-disk image of a solar corona (observed by Yohkoh)

An X-class flare in an active region (observed by *Hinode*)

Schematic model of a solar flare

Shibata et al. (1995)

Numerical simulation of a solar flare

Shiota et al. (2005)

Flux emergence

Emergence of magnetic flux from a solar interior into a solar atmosphere

Observation of flux emergence

Observed by *TRACE*

Schematic model of flux emergence

Shibata et al. (1989)

Numerical simulation of flux emergence

Magara (2004)

Coronal mass ejection

Solar global eruption to an interplanetary space

Observation of coronal mass ejections

Observed by **SOHO**

Numerical simulation of a coronal mass ejection (from the Sun to the Earth)

Manchester et al. (2003)

Granulation

Solar surface motion

Observation of granulation at a solar photosphere

Observed by *Hinode*

Schematic model of granulation **Photosphere** optically thin, radiation Top view Side view Convection zone optically thick, convection

Numerical simulation of granulation

Numerical simulation can tell *invisible* **solar internal dynamics**...

