$oldsymbol{\cdot} ho_c \sim 0$ (local charge neutrality)

$$\nabla \bullet E = \frac{\rho_c}{\varepsilon_0} \Rightarrow \frac{E_0}{l_0} \sim \frac{e \left(n_+ - n_-\right)}{\varepsilon_0}$$

$$n_+ - n_- \sim \frac{\varepsilon_0}{e} \frac{E_0}{l_0} \approx \frac{\varepsilon_0 \left(\frac{l_0 B}{t_0}\right)}{e l_0} = \frac{\varepsilon_0}{e} \frac{v_0 B}{l_0}$$

Condition of local charge neutrality:

$$\mid n_{\scriptscriptstyle +} - n_{\scriptscriptstyle -} \mid$$
 << $n_{\scriptscriptstyle +} + n_{\scriptscriptstyle -} \equiv n_{\scriptscriptstyle total}$ (total number density)

 $e = 1.6 \times 10^{-19} C$ (electron charge)

e.g. solar corona:
$$n_{total} \sim 10^{14} \, \mathrm{m}^{-3}$$
, $v_0 \sim 10^5 \, \mathrm{m/s}$, $l_0 \sim 10^7 \, \mathrm{m}$, $B \sim 10^{-2} \, \mathrm{T}$

$$6.7 \times 10^7 \, \frac{v_0 B}{l_0} << n_{total} \rightarrow 6.7 \times 10^3 << 10^{14} \, \frac{1}{100} \, \mathrm{satisfied}$$

Coulomb's law $\nabla \cdot E = \frac{\rho_c}{\epsilon_0}$ is <u>NOT used</u> to determine electric field in MHD.

Ohm's law determines electric field in MHD from the state of plasma.

Magnetic energy density vs. electric energy density in MHD

Electric energy density... $\mathcal{E}_E = \frac{\varepsilon_0}{2}E^2$

Magnetic energy density... $\mathcal{E}_M = \frac{B^2}{2 \mu_0}$

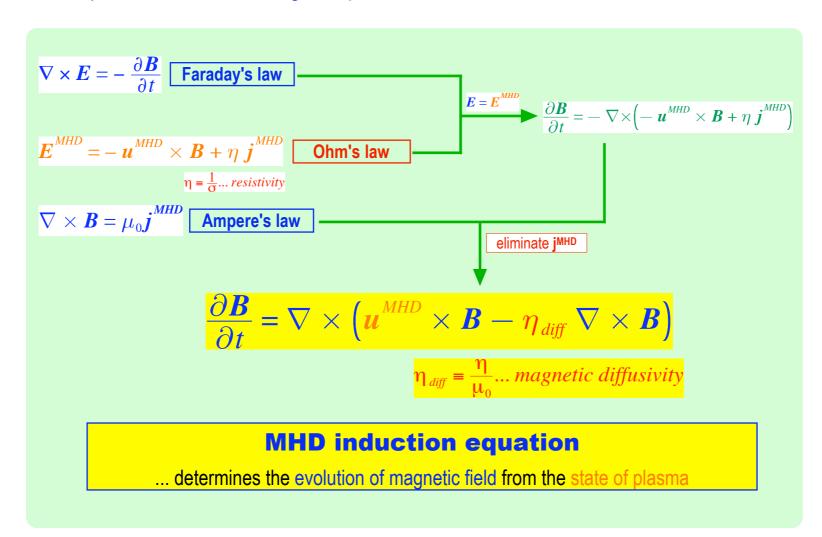
The ratio is
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \longrightarrow \frac{E}{l_0} \approx \frac{B}{t_0}$$

$$\mathcal{E}_{E/\mathcal{E}_M} = \frac{\varepsilon_0 \, \mu_0 \, E^2}{B^2} \approx \frac{\left(\frac{l_0}{t_0} \, B\right)^2}{c^2 \, B^2} = \frac{v_0^2}{c^2} << 1$$

$$\longrightarrow \text{electric energy density can be neglected in MHD}$$

MHD induction equation

... represents the electromagnetic part



MHD equations

$$\frac{\partial \rho}{\partial t} + \nabla \bullet (\rho u) = 0$$
 ... mass conservation (=> density)

Fluid part

$$\rho \left[\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \bullet \nabla \boldsymbol{u} \right] = -\nabla p + \nabla \bullet \stackrel{\leftarrow}{\pi} + \boldsymbol{j} \times \boldsymbol{B} \quad \text{... momentum equation (=> flow velocity)}$$

$$\pi_{k} = \mu D_{k}, D_{k} \equiv \frac{\partial u_{i}}{\partial x_{i}} + \frac{\partial u_{k}}{\partial x_{i}} - \frac{2}{3} \left(\nabla \cdot \boldsymbol{u} \right) \delta_{k} \quad \text{(deformation rate tensor)}$$

$$\frac{\partial}{\partial t} \left(\rho \, \mathcal{E} \right) + \nabla \bullet \left(\rho \, \mathcal{E} \, \boldsymbol{u} \right) = -P \, \nabla \bullet \boldsymbol{u} - \nabla \bullet \, \boldsymbol{\mathscr{T}} + \Psi + \eta \, \boldsymbol{j}^2$$

$$\mathcal{E} = \frac{1}{\gamma - 1} \frac{P}{\rho} \, , \, \gamma = \frac{5}{3} \qquad \qquad \mathcal{F}_i = -\kappa \, \frac{\partial T}{\partial x_i} \, \Psi \equiv \pi_{ik} \, \frac{\partial u_i}{\partial x_i} \quad \dots \text{ internal energy equation (=> pressure)}$$

$$T = \frac{P}{\rho} \frac{\overline{m}}{k_B}$$
 ... equation of state (=> temperature)

$$\frac{\partial {m B}}{\partial t} =
abla imes \left({m u} imes {m B} - \eta_{
m diff} \,
abla imes {m B}
ight)$$
 ... induction equation (=> magnetic field)

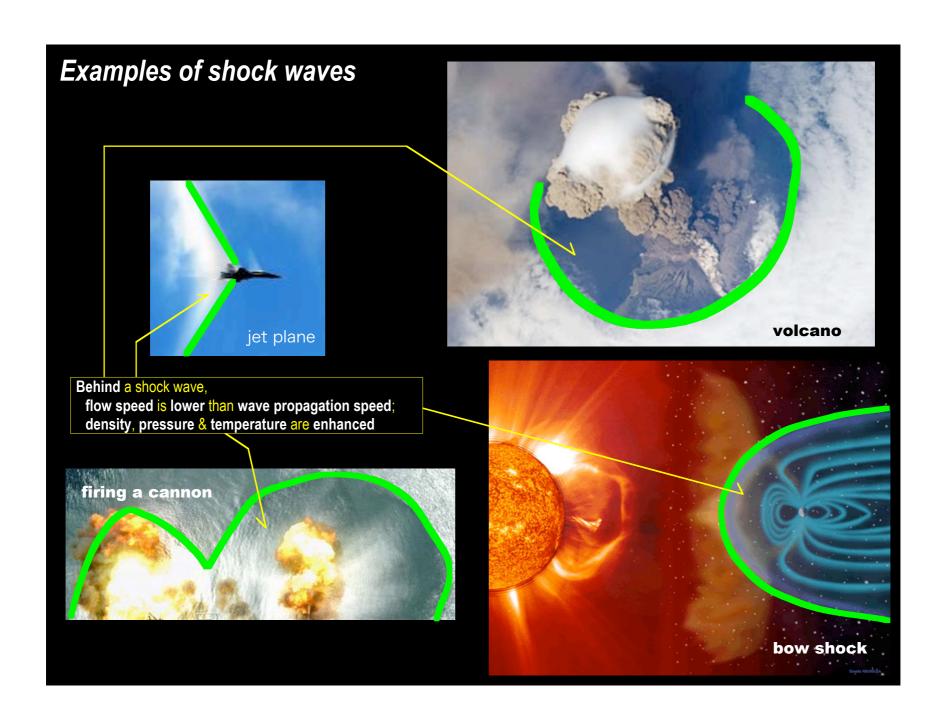
$$m{E} = - m{u} \times m{B} + \eta \ m{j}$$
 ... Ohm's law (=> electric field)

Electromagnetic part

$$oldsymbol{j} = rac{1}{\mu_0} \,
abla imes oldsymbol{B}$$
 ... Ampere's law (=> current density)

$$abla oldsymbol{\bullet} oldsymbol{B} = 0$$
 ... magnetic flux conservation (=> initial configuration of magnetic field)

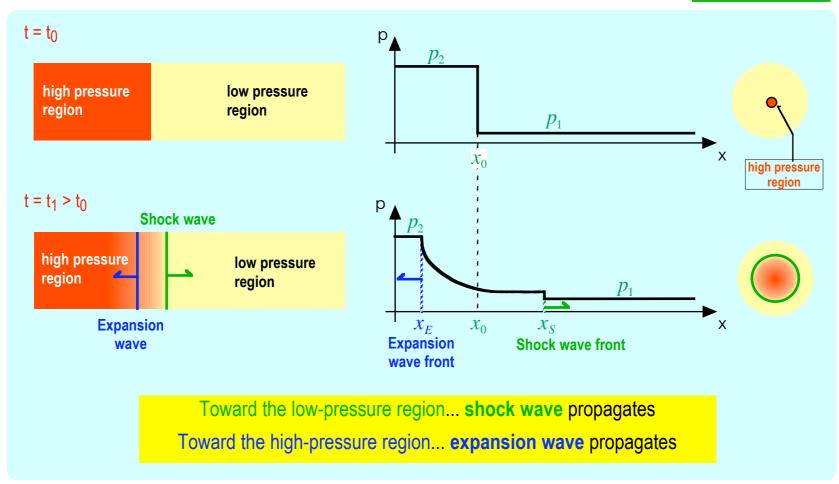
Shock wave



Generating mechanisms of a shock wave

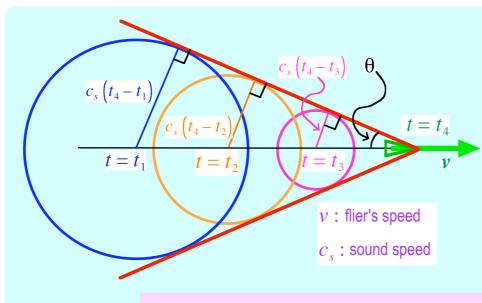
1) Thermal energy is deposited... (shock tube, blast wave)

associated with a highly dynamic event



2) Supersonic flier exists...

associated with a highly dynamic event



A flier (green triangle) travels at a supersonic speed ($v > c_s$).

A sound wave generated at t₁, t₂ and t₃ forms a spherical wave front (blue, orange, pink).

The envelop of these spherical wave fronts forms a cone-shaped shock wave front (red).

The **inclination angle** θ is given by

$$v \sin \theta = c_S \quad \left(\Leftrightarrow \frac{v}{c_S} = M = \frac{1}{\sin \theta} > 1 \right)$$

When the Mach number M is **much larger than 1**, the shock wave front forms a **sharp cone** (small θ).

When the Mach number M is **not much larger than 1**, the shock wave front is **detached from the flier** and forms an **arc-shaped bow shock** in front of the flier.