Typical scales in both approaches...

Kinetic approach... particle is a fundamental object (its internal structure is not considered)

Typical scales:

Length... L_D (Debye length) e.g., 1 cm for a solar coronal plasma

Time... $L_D/v_{th} \sim 1/v_p$ (plasma frequency) e.g., 5×10^{-9} s for a solar coronal plasma

Fluid approach... fluid element is a fundamental object (its internal structure is not considered)

$$r_{particle} << L_D << l_{mfp} << L_{FE} << L_{system}$$
 $r_G << L_{FE}$

Typical scales:

Length... L_{system} (System size) e.g., $100,000 \text{ km} \sim 10^8 \text{ m}$ for a coronal loop

Time...
$$L_{system} / v_A (v_A = \frac{B}{\sqrt{\mu_0 n m}} : Alfvén speed)$$

e.g., 100 s for a coronal loop ($v_A \sim 1000 \text{ km/s}$)

Summary of characteristic scales of plasmas

	E-related scale			B-related scale	
Length	mean free path $(l_{\it mfp})$	Debye length (L_D)	effective radius $(r_{\it eff})$	gyration radius (r_G)	mean interval
Time	collision time $(t_c = rac{l_{mfp}}{v_T})$	oscillation period $(t_p = \frac{L_D}{v_T})$		gyration period $(t_G = rac{r_G}{v_T})$	
Physical process	collision	oscillation	collision with a large scattering angle	gyration	
Physical effect	thermalization	neutralization	thermalization	pressure & current in B _⊥ -plane	
CGS unit	$I_{mfp}^{e-e} = \frac{(k_B T_e)^2}{4 \pi n_e e^4} \frac{1}{\ln N_D}$	$L_D = \sqrt{\frac{k_B T}{4\pi e^2 n_e}}$	$r_{eff} \sim \frac{e^2}{k_B T}$	$r_G = \frac{m c v_T}{e B}$	$t \sim n^{-\frac{1}{3}}$

Kinetic approach... Focus on the position and velocity of a particle at every time

In the kinetic approach, we consider the **physical state** of a **particle** represented by its **position** and velocity.

The mechanical equation is a differential equation where time is the only independent variable (ordinary differential equation, ODE).

$$\begin{cases} m \frac{dv_x}{dt} = F_x(x(t), z(t), v_x(t), v_z(t), t) \\ m \frac{dv_z}{dt} = F_z(x(t), z(t), v_x(t), v_z(t), t) \end{cases}$$

$$\begin{cases} \frac{dx}{dt} = v_x(t) \\ \frac{dz}{dt} = v_z(t) \end{cases}$$