
5. Interaction with non-uniform magnetic field

Mirror effect

Relatively low-energy charged particles are reflected at a region where magnetic field becomes strong.

This may cause particle acceleration when the region moves against an incident particle.

From a single particle to a plasma composed of many particles

Coulomb force

 ρ_c : charge density, $\rho_c \sim 0$ (local charge neutrality)

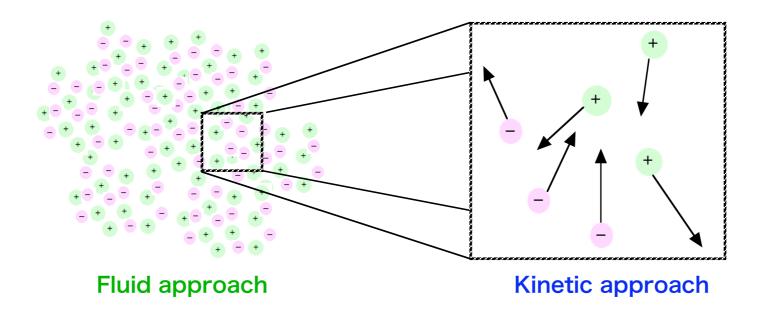
One-directional acceleration \longrightarrow current in B_{ii} -direction (field-aligned current FAC)

Lorentz force

j: current density

Gyration — current in B_{\perp} -plane when nonuniformity exists

Coulomb force + Lorentz force


ExB drift \longrightarrow average flow in B_{\perp}-plane

Two approaches to plasma physics

Plasma... composed of many particles

Focus on a selected local region → **Kinetic approach**

Focus on the whole region \rightarrow Fluid approach

Kinetic approach → study microscale processes, the behavior of particles

Fluid approach → study macroscale processes, the behavior of fluid elements*

*fluid element... a <u>virtual</u> object containing a number of particles; most of the particles keep staying inside the object (=> typical size L_{FE} >> l_{mfp} , r_{G})

 $l_{\it mfp}$: mean free path $r_{\it G}$: gyration radius