5. Interaction with non-uniform magnetic field ### **Mirror effect** Relatively low-energy charged particles are reflected at a region where magnetic field becomes strong. This may cause particle acceleration when the region moves against an incident particle. ### From a single particle to a plasma composed of many particles #### **Coulomb force** ρ_c : charge density, $\rho_c \sim 0$ (local charge neutrality) One-directional acceleration \longrightarrow current in B_{ii} -direction (field-aligned current FAC) #### **Lorentz force** **j**: current density **Gyration** — current in B_{\perp} -plane when nonuniformity exists #### **Coulomb force + Lorentz force** ExB drift \longrightarrow average flow in B_{\perp}-plane Two approaches to plasma physics # Plasma... composed of many particles Focus on a selected local region → **Kinetic approach** Focus on the whole region \rightarrow Fluid approach **Kinetic approach** → study microscale processes, the behavior of particles Fluid approach → study macroscale processes, the behavior of fluid elements* *fluid element... a <u>virtual</u> object containing a number of particles; most of the particles keep staying inside the object (=> typical size L_{FE} >> l_{mfp} , r_{G}) $l_{\it mfp}$: mean free path $r_{\it G}$: gyration radius